

 Page 1 of 5

Baldwin Wallace University Information Technology Standard

Issued by: Information Technology

Title: Secure Software Development

Number: ITS-BW-27-01

Publish date: September 1, 2024

NIST SSDF:

Due to BW’s very limited software development and small staff, many of the in-depth
recommendations by NIST and OWASP are simply not practical. What follows are BW’s
requirements to follow each of the NIST SSDF best practices.

ITS-BW-27-01 Secure

Software Development Standard.xlsx

NIST SSDF Best Practices BW Actions to be Taken

Define Security Requirements for
Software Development (PO.1): Ensure
that security requirements for software
development are known at all times so
that they can be taken into account
throughout the SDLC and duplication of
effort can be minimized because the
requirements information can be collected
once and shared. This includes
requirements from internal sources (e.g.,
the organization’s policies, business
objectives, and risk management strategy)
and external sources (e.g., applicable laws
and regulations).

To ensure security requirements are well understood the
data affected must be classified and protected per the DGP-
BW-04 Data Classification Policy. Additionally, consideration
must be taken into account based on the biannual
organization's IT risk assessment.

For purchased applications or code developed for the
university by a third party, Baldwin Wallace University
leverages contractual agreements and the industry-standard
“Higher Education Community Vendor Assessment Toolkit”
(HECVAT) for vendor risk assessments. The HECVAT is a
questionnaire framework specifically designed for higher
education to measure vendor risk. See ITP-BW-16
Outsourcing Policy and ITS-BW-16-02 Vendor Risk
Assessment for further information.

Implement Roles and Responsibilities
(PO.2): Ensure that everyone inside and
outside of the organization involved in the
SDLC is prepared to perform their SDLC-
related roles and responsibilities
throughout the SDLC.

All code developed by BW IT may only be moved into
production after it has been approved by management using
BW's change control process as defined in the ITP-BW-18
Change Management Policy.

Code development responsibilities for BW IT must be defined
in relevant job descriptions.

Due to the limited size of the BW IT staff, typically only one
person is familiar with a product or system making it not
operationally feasible to perform segregation of duties. As
such, it has been deemed an acceptable risk for one person
to perform all SDLC tasks.

 Page 2 of 5

Implement Supporting Toolchains
(PO.3): Use automation to reduce human
effort and improve the accuracy,
reproducibility, usability, and
comprehensiveness of security practices
throughout the SDLC, as well as provide a
way to document and demonstrate the use
of these practices. Toolchains and tools
may be used at different levels of the
organization, such as organization-wide or
project-specific, and may address a
particular part of the SDLC, like a build
pipeline.

BW currently does not leverage third-party tools supporting
code development as most all code development is based on
a specific platform's requirements such as Colleague which
uses a custom development environment. As such this
requirement is nonapplicable. Should this situation change,
this standard will be updated.

Define and Use Criteria for Software
Security Checks (PO.4): Help ensure that
the software resulting from the SDLC
meets the organization’s expectations by
defining and using criteria for checking the
software’s security during development.

Record security check approvals, rejections, and exception
requests as part of the workflow and tracking system.

Only allow authorized personnel to access the gathered
information, and prevent any alteration or deletion of the
information.

Implement and Maintain Secure
Environments for Software
Development (PO.5): Ensure that all
components of the environments for
software development are strongly
protected from internal and external
threats to prevent compromises of the
environments or the software being
developed or maintained within them.
Examples of environments for software
development include development, build,
test, and distribution environments.

All code development must take place in test or development
environments. Never in production unless specifically
approved by management via Change Control.

All test or development environments must be secured,
hardened, and monitored to the same level as their
production equivalent environments. Any exception must be
approved by the CIO.

Access to test or development environments must be
managed by the principle of least privilege.

Protect All Forms of Code from
Unauthorized Access and Tampering
(PS.1): Help prevent unauthorized
changes to code, both inadvertent and
intentional, which could circumvent or
negate the intended security
characteristics of the software. For code
that is not intended to be publicly
accessible, this helps prevent theft of the
software and may make it more difficult or
time-consuming for attackers to find
vulnerabilities in the software.

Store all forms of code – including source code, executable
code, and configuration-as-code – based on the principle of
least privilege so that only authorized personnel, tools,
services, etc. have access. Where technically and financially
reasonable:

 - Require MFA.
 - Leverage BW's Privileged Access Management solution.
 - Use BW-approved code signing certificates.

Provide a Mechanism for Verifying
Software Release Integrity (PS.2): Help
software acquirers ensure that the
software they acquire is legitimate and has
not been tampered with.

Not applicable. BW does not sell or share its code or
resulting products.

 Page 3 of 5

Archive and Protect Each Software
Release (PS.3): Preserve software
releases in order to help identify, analyze,
and eliminate vulnerabilities discovered in
the software after release.

Securely archive the necessary files and supporting data
(e.g., integrity verification information, provenance data) to be
retained for each software release. Where possible, use a
code version library solution.

Design Software to Meet Security
Requirements and Mitigate Security
Risks (PW.1): Identify and evaluate the
security requirements for the software;
determine what security risks the software
is likely to face during operation and how
the software’s design and architecture
should mitigate those risks; and justify any
cases where risk-based analysis indicates
that security requirements should be
relaxed or waived. Addressing security
requirements and risks during software
design (secure by design) is key for
improving software security and also helps
improve development efficiency.

Developers will:
 - Be trained in FERPA, FTC Safeguards Rules, and other
relevant requirements.
 - Understand the data classification of all data involved in the
coding project before generating any coding.
 - Understand the security capabilities and limitations of the
platform being customized.
 - Maintain applicable records of design decisions, risk
responses, and approved exceptions that can be used for
auditing and maintenance purposes throughout the rest of
the software life cycle.

Review the Software Design to Verify
Compliance with Security
Requirements and Risk Information
(PW.2): Help ensure that the software will
meet the security requirements and
satisfactorily address the identified risk
information.

Due to the limited size of the BW IT staff, typically only one
person is familiar with a product or system making it not
operationally feasible to perform compliance reviews. As
such, it has been deemed an acceptable risk to not perform
manual code reviews. If a software code review tool is
available for the type of code being generated, then it will be
used if technically possible.

Reuse Existing, Well-Secured Software
When Feasible Instead of Duplicating
Functionality (PW.4): Lower the costs of
software development, expedite software
development, and decrease the likelihood
of introducing additional security
vulnerabilities into the software by reusing
software modules and services that have
already had their security posture
checked. This is particularly important for
software that implements security
functionality, such as cryptographic
modules and protocols.

Using source code from the Internet must only be
downloaded from original trusted sites. The downloading of
code from mirror sites or other sites is prohibited.

Any code that is downloaded must be manually reviewed by
the developer to ensure it is well-understood and free from
any malicious code.

Any code that is downloaded must be kept in a library for
future reference while that code is in use.

 Page 4 of 5

Create Source Code by Adhering to
Secure Coding Practices (PW.5):
Decrease the number of security
vulnerabilities in the software, and reduce
costs by minimizing vulnerabilities
introduced during source code creation
that meet or exceed organization-defined
vulnerability severity criteria.

Developers must follow all secure coding practices that are
appropriate to the development languages and environment
to meet the organization’s requirements. Examples include,
but are not limited to:

 - Validate all inputs, and validate and properly encode all
outputs.
 - Avoid using unsafe functions and calls.
 - Detect errors, and handle them gracefully.
 - Provide logging and tracing capabilities.
 - Follow procedures for manually ensuring compliance with
secure coding practices when automated methods are
insufficient or unavailable.
 - Use tools (e.g., linters, formatters) to standardize the style
and formatting of the source code.
 - Check for other vulnerabilities that are common to the
development languages and environment.
 - Review their human-readable code.

Configure the Compilation, Interpreter,
and Build Processes to Improve
Executable Security (PW.6): Decrease
the number of security vulnerabilities in
the software and reduce costs by
eliminating vulnerabilities before testing
occurs.

Use up-to-date versions of compiler, interpreter, and build
tools.

Follow change management processes as defined in ITP-
BW-18 Change Management Policy when deploying or
updating compiler, interpreter, and build tools, and audit all
unexpected changes to tools.

Perform all builds in a test or developed environment. Never
production unless specifically approved by management via
Change Control.

Review and/or Analyze Human-
Readable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.7):
Help identify vulnerabilities so that they
can be corrected before the software is
released to prevent exploitation. Using
automated methods lowers the effort and
resources needed to detect vulnerabilities.
Human-readable code includes source
code, scripts, and any other form of code
that an organization deems human-
readable.

Due to the limited size of the BW IT staff, typically only one
person is familiar with a product or system making it not
operationally feasible to perform compliance reviews. As
such, it has been deemed an acceptable risk to not perform
manual code reviews. If a software code review tool is
available for the type of code being generated, then it will be
used if technically possible.

Test Executable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.8):
Help identify vulnerabilities so that they
can be corrected before the software is
released in order to prevent exploitation.
Using automated methods lowers the
effort and resources needed to detect
vulnerabilities and improves traceability
and repeatability. Executable code
includes binaries, directly executed
bytecode and source code, and any other
form of code that an organization deems
executable.

All in-scope platforms must maintain at a minimum a test and
production environment.

All newly developed code must be fully tested and evaluated
in the test environment where technically possible. Any
exception must be approved by the CIO.

 Page 5 of 5

Configure Software to Have Secure
Settings by Default (PW.9): Help improve
the security of the software at the time of
installation to reduce the likelihood of the
software being deployed with weak
security settings, putting it at greater risk
of compromise.

Define a secure baseline for the platform being used for
development by determining how to configure each setting
that affects security or a security-related setting so that the
default settings are secure and do not weaken the security
functions provided by the platform, network infrastructure, or
services.

Conduct annual auditing to ensure that the settings, including
the default settings, are working as expected and are not
inadvertently causing any security weaknesses, operational
issues, or other problems.

Store the default configuration in a usable format and follow
change control practices for modifying it (e.g., configuration-
as-code).

Identify and Confirm Vulnerabilities on
an Ongoing Basis (RV.1): Help ensure
that vulnerabilities are identified more
quickly so that they can be remediated
more quickly in accordance with risk,
reducing the window of opportunity for
attackers.

In-scope platforms will be scanned per the ITP-BW-22 Patch
and Vulnerability Management Policy and be included in
penetration testing. Additionally, BW will subscribe to
relevant vendor and publicly available information feeds of
vulnerabilities.

Any security incident will be handled by the BW Incident
Response team per the ITP-BW-10 Incident Response Policy
and its supporting incident response plans.

Assess, Prioritize, and Remediate
Vulnerabilities (RV.2): Help ensure that
vulnerabilities are remediated in
accordance with risk to reduce the window
of opportunity for attackers.

In scope, platforms will be evaluated and remediated per the
ITP-BW-22 Patch and Vulnerability Management Policy.

